85 research outputs found

    Origins of chemical diversity of back-arc basin basalts: a segment-scale study of the Eastern Lau Spreading Center

    Get PDF
    We report major, trace, and volatile element data on basaltic glasses from the northernmost segment of the Eastern Lau Spreading Center (ELSC1) in the Lau back-arc basin to further test and constrain models of back-arc volcanism. The zero-age samples come from 47 precisely collected stations from an 85 km length spreading center. The chemical data covary similarly to other back-arc systems but with tighter correlations and well-developed spatial systematics. We confirm a correlation between volatile content and apparent extent of melting of the mantle source but also show that the data cannot be reproduced by the model of isobaric addition of water that has been broadly applied to back-arc basins. The new data also confirm that there is no relationship between mantle temperature and the wet melting productivity. Two distinct magmatic provinces can be identified along the ELSC1 axis, a southern province influenced by a “wet component” with strong affinities to arc volcanism and a northern province influenced by a “damp component” intermediate between enriched mid-ocean ridge basalts (E-MORB) and arc basalts. High–field strength elements and rare earth elements are all mobilized to some extent by the wet component, and the detailed composition of this component is determined. It differs in significant ways from the Mariana component reported by E. Stolper and S. Newman (1994), particularly by having lower abundances of most elements relative to H_(2)O. The differences can be explained if the slab temperature is higher for the Mariana and the source from which the fluid is derived is more enriched. The ELSC1 damp component is best explained by mixing between the wet component and an E-MORB-like component. We propose that mixing between water-rich fluids and low-degree silicate melts occurs at depth in the subduction zone to generate the chemical diversity of the ELSC1 subduction components. These modified sources then rise independently to the surface and melt, and these melts mix with melts of the background mantle from the ridge melting regime to generate the linear data arrays characteristic of back-arc basalts. The major and trace element framework for ELSC1, combined with different slab temperatures and compositions for difference convergent margins, may be able to be applied to other back-arc basins around the globe

    Glacial cycles drive variations in the production of oceanic crust

    Full text link
    Glacial cycles redistribute water between oceans and continents causing pressure changes in the upper mantle, with consequences for melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows significant spectral energy near the Milankovitch periods of 23, 41, and 100 ky, consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.Comment: 30 pages, 6 figures (including supplementary information). Resubmitted to Science on 12 December 201

    Volcanic glasses at the Izu arc volcanic front : new perspectives on fluid and sediment melt recycling in subduction zones

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q01007, doi:10.1029/2002GC000408.Volcanic glasses contained in distal fallout tephras from the Izu arc volcanic front (Izu VF) provide unique perspectives on general problems of arc volcanism. Unlike cogenetic lavas, these glasses are liquid compositions where element concentrations as well as ratios have significance. Isotopic evidence and previous work show that there is no sediment melt contribution to the sources of the Izu VF tephras, and hence their trace element characteristics permit determination of the trace element contents of slab fluids. The slab fluid is a composite of metasediment (∼5% of total fluid) and metabasalt (∼95%) component fluids, and carries large ion lithophile elements (LILE) with high LILE/Th and LILE/U, and low Th and U relative to source. Except for Sr and K, the metabasalt fluid is much less enriched than the metasediment fluid, but its large relative proportions make it an important carrier of many trace elements. The metabasalt fluid has the characteristics of the arc trace element signature, obviating the need for ubiquitous involvement of sediment in arc magma genesis. The fluid component in the tephras is remarkably constant in composition over fifteen million years, and hence appears to be a robust composition that may be applicable to other convergent margins. Assuming that the metabasalt fluid is a common component, and that distribution coefficients between sediment and fluid are similar from one arc to another, composite fluid compositions can be estimated for other arcs. Differences from this composition then would likely result from a sediment melt component. Comparison to arcs with sediment melt components in their source (Marianas, eastern Aleutians) shows that partial sediment melts may be so enriched, that they can completely mask the signature of the comingling slab fluids. Hence sediment melts can easily dominate the trace element and isotopic signature of many convergent margins. Since sediment melts inherit the LILE/LILE ratios of the trench sediment, Earth's surface processes must eventually influence the compositional diversity of arcs.This study was funded by the “Deutsche Forschungsgemeinschaft” (grants Str 441/3 and 441/4). The Northeast National Ion Microprobe Facility at WHOI was supported by grants EAR-9628749 and EAR-990440 from the National Science Foundation
    • …
    corecore